

Modeling for Intra-Chip Optical Interconnects

Problem

•CMOS thermal environment: hot (> 125 C and variable (± 10 C)

Objective

- •Couple thermal CMOS models with circuit-level VCSEL models
- Integrate models with standard system design tools for higher functionality VSCEL-based circuits

Approach

- Combine multiple time and frequency domain measurements with a fast nonlinear fitting routine
- Use simple polynomial for temperature dependence

· Partners: Motorola, Sun

Measured and modeled I-V and L-I curves as a function of temperature

Thermal flux and temperature of an Intel processor (from Intel).

G. Papen

Coding for Intra-Chip Optical Interconnect

Problem

Designing lasers that can operate "openloop" with CMOS is hard

Objective

•Use coding to overcome physical limitations of devices (variable thresholds, slopes efficiencies, jitter, etc.)

Approach

- Leverage coding work on multimode fiber
- Trade bandwidth for redundancy
- Use simplified forms of forward error correction (FEC) codes developed for 1000 base-T.
- · Partners: Agilent, Sun

G. Papen

3.3 V VCSEL CMOS driver output

